nada

# **Topics in Development of Naval Architecture Software Applications**

Kevin McTaggart, David Heath, James Nickerson, Shawn Oakey, and James Van Spengen Simulation of Naval Platform Group Defence R&D Canada – Atlantic Dartmouth, Nova Scotia, Canada

Society of Naval Architects and Marine Engineers Atlantic Canada Section, Halifax, 16 April 2014

DRDC | RDDC

#### **Authors**

| Kevin     | David | James     | Shawn Oakey | Jim         |
|-----------|-------|-----------|-------------|-------------|
| McTaggart | Heath | Nickerson |             | Van Spengen |
|           |       |           |             |             |



#### **Naval Architecture Software Applications - Outline**

- Evolution of naval architecture software
- What's happening today: great complexity
- How we work as a team to develop software
- Where are we going?

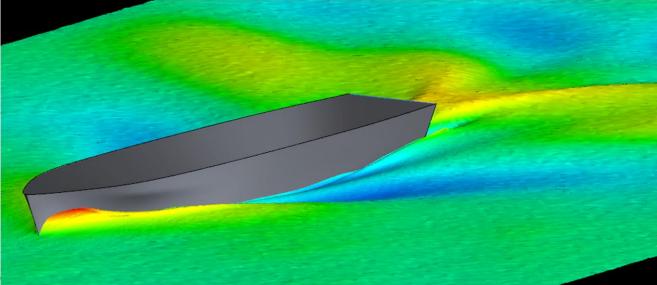


#### **Early Days**



Card Reader Service for 80-Column IBM Punch Cards http://PunchCardReader.com ........ ...... .... 0 0880 0 . 333 3 1 3 3 4 3 6 5 8 6 9 1 2 6 1 2 8 6 1 8 8 8 1 8 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 






#### **Evolution of Naval Architecture Software Applications:** Early software applications (1960s and 1970s)

- Hydrodynamic added mass and damping for arbitrary twodimensional hull sections (Frank 1967)
- Ship hydrostatic analysis (Naval Ship Engineering Center 1976)
- Basic ship structural optimization (Hughes and Mistree 1976)
- Definition of hull lines using splines (Fuller, Aughey, Billingsley 1977)
- Estimation of ship performance properties using regression of experimental results:
  - Powering (Holtrop and Mennen 1978)
  - Maneuvering (Inoue, Hirano, and Kijima 1981)

#### **Evolution of Naval Architecture Software Applications: Contemporary applications**

- Prediction of ship resistance with computational fluid dynamics, including detailed modelling of viscous effects (Thornhill 2008)
- Simulation of ship maneuvering in waves (McTaggart 2010)
- Simulation of large-magnitude ship structural deformation, including collisions (Haris and Amdahl 2013)



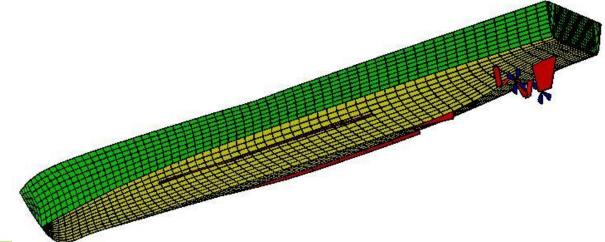


#### **Evolution of Naval Architecture Software Applications:** Increasing Complexity

|                          | 1988                           | 2013                                                |  |
|--------------------------|--------------------------------|-----------------------------------------------------|--|
| Languages                | Fortran                        | C++, C#, Java, Python,                              |  |
| Lines of code            | 5,000                          | 5,000,000                                           |  |
| Size of development team | 1-2                            | 5-10                                                |  |
| User input method        | Text file or console line      | Graphical user interface                            |  |
| Seakeeping prediction    | Strip theory, frequency domain | Strip theory or 3D, frequency domain or time domain |  |
| Resistance prediction    | Potential flow                 | Viscous flow                                        |  |
| Structural analysis      | Hull girder                    | 3D finite element                                   |  |



#### **Example Contemporary Applications:** Frequency Domain Seakeeping with Strip Theory


- Salvesen, Tuck, and Faltinsen (1970) give excellent overview
- Assumes ship geometry is slender:
  - Applicable for most naval vessels
- Surprisingly good results when compared with more sophisticated approaches

Willich

# **Ship Motions Prediction with 3D Models**

3D theory gives advantages over strip theory:

- Applicable to wider range of hull forms
- More accurate sea load predictions
- Modelling of interaction effects between vessels
- Small computational times on modern desktop computers

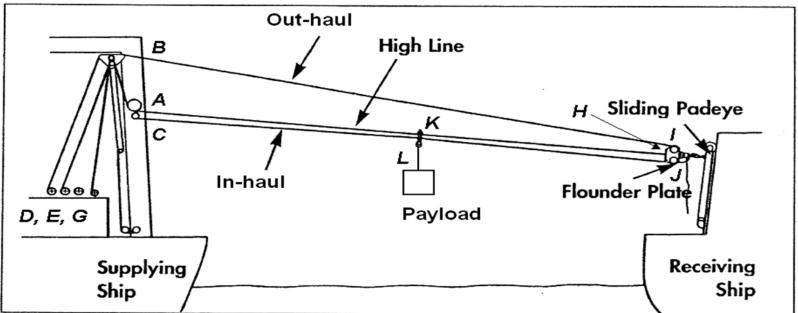




# **Simulation of Ship Motions in the Time Domain**

#### Time domain simulation presents new opportunities

- Maneuvering
- Nonlinear forces
- Interoperability with other simulations
- Can often run in real-time or faster








#### **Example Contemporary Applications: Simulation of Replenishment at Sea**

- Seaway
- Supply ship, including helm and motions in seaway
- Receiving ship, including helm and motions in seaway
- Replenishment gear

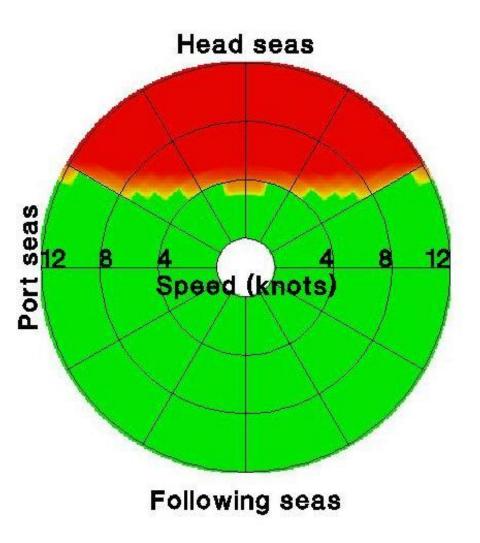






#### Example Contemporary Applications: Simulation of Launch and Recovery of Small Boats from Ships

- Navies have great interest in launch and recovery
  - Anti-piracy
  - Search and rescue
  - Autonomous vehicles
- Launch and recovery becomes increasingly challenging as sea state increases








# **Ship Operator Guidance**

- Can provide real-time guidance
- Seaway measurement
- Rapid computation of ship motions
- Very enthusiastic response from ship operators





# Where Are We Today?

- Software is very complex
- Huge range of skills required
- No single person can complete work



#### How Do We Get the Job Done?

- We use modern software technologies
- We work as a team





#### **Relevant Technologies for Modern Software Development**

#### Spoilt for choice

Must consider both initial development and long-term maintainability of software



# Wide Availability of Programming Libraries

Usage of existing software libraries can bring many advantages:

- Reduction of development effort
- Existing documentation
- Existing expertise using software library
- Be aware of licensing terms:
  - No cost or restrictions
  - No cost but restrictions on developed software
  - Cost for developer license (\$)
  - Cost for developer license and for runtime license (\$\$)



# **Object-Oriented Programming**

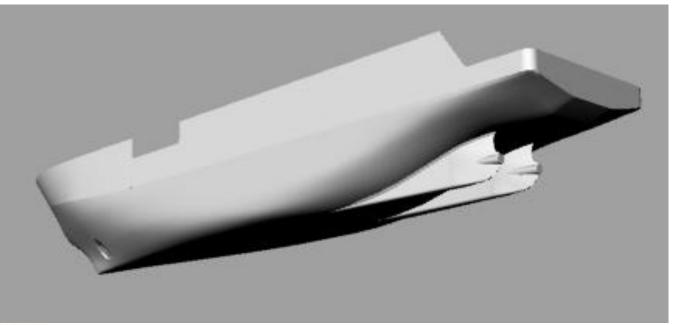
- Dominant approach for developing modern software
- C++, C#, Java, etc.
- Example objects from ship motion library:
  - Seaway
    - RegularSeaway
    - MultiComponentSeaway
  - ShipHull
    - DryShipHull
    - WetShipHull
  - ShipAppendage
    - Rudder
    - Bilge keel



# **Graphical User Interfaces**

- GUIs can greatly improve usability of software
- Modern software libraries make development easy

#### **Regular wave parameters**


| Wave heading (deg)     | 45.0 |
|------------------------|------|
| Wave frequency (rad/s) | 0.2  |
| Wave amplitude (m)     | 1.0  |
| Wave phase (deg)       | 30.0 |



# **3D Modelling and Visualization**

Ship hulls and other 3D surfaces can be modelling highly accurately using parametric surfaces

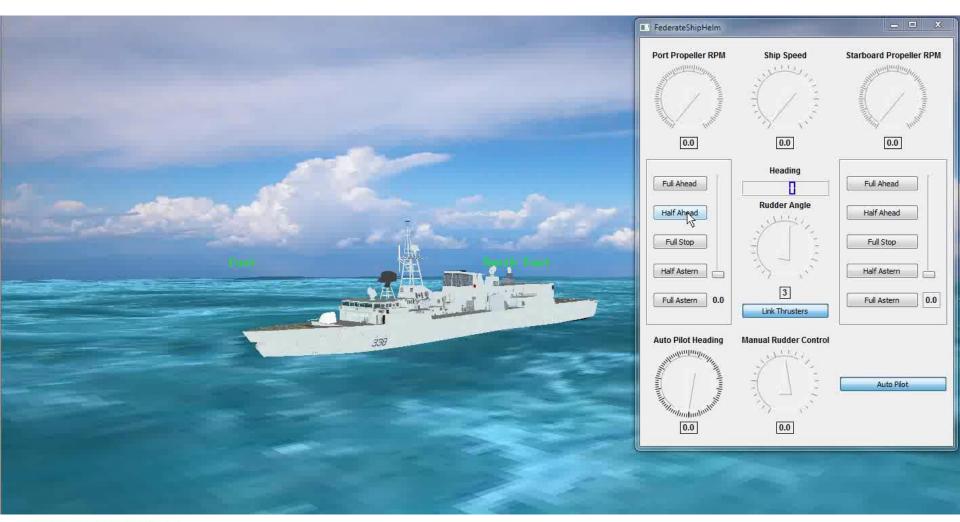
x, y, z = F(u, v)





# **3D Modelling and Visualization**

 3D visualization has become a vital tool for understanding results of complex simulations






# **Distributed Simulation**

- A complex simulation can run on an array of computers linked via a network
- Array of software programs must share data and run in a synchronized manner
- High Level Architecture (Kuhl, Weatherly and Dahmann 1999) is one approach that can be used
  - Specialized skill required
  - Large investment, but potential long-term payoff







# **Parallel Computing**

Computers with multiple processors are now the norm

- Central processing units (CPUs)
- Graphic processing units (GPUs)
- Development tools for parallel computing are widely available ...
- But, parallel programming can be difficult
- Examples well-suited to parallel processing:
  - Evaluation of Green functions for flow on a hull surface
  - Matrix multiplication



# **Programming Languages: Factors Influencing Selection**

- Numerical computation, including complex numbers
- Ease of programming and maintenance
- Execution speed
- Platform portability
- Availability of libraries, including visualization and user interfaces
- Interoperability with other programming languages
- Availability of programmers and time required to train programmers
- Suitability to problem



#### **Programming Languages: Current Popularity**

| Language | Rank |
|----------|------|
| Java     | 2    |
| C++      | 4    |
| C#       | 5    |
| Python   | 8    |
| Fortran  | 34   |

Source: TIOBE Index (<u>www.tiobe.com</u>), April 2014



#### **Programming Languages: Current Usage by Authors**

#### ■ C++

- Used by authors since early 1990s
- Object-oriented, high execution speed
- Requires very skilled programmer

#### ■ C#

- Modern language developed using lessons from C++ and Java
- Relatively easy to program
- Runs in virtual machine, giving some performance penalty

Python

- Dynamically typed, so variables aren't declared (double x not required)
- Relatively easy to program and code is concise
- Slower execution speed because code is interpreted during execution



# Matching of Skills To Tasks: Two Types of Contributors

- Domain expert
  - Post-graduate degree in engineering, math, or physics
  - Specialized domain knowledge in hydrodynamics, structural mechanics, or multi-body dynamics
  - Writing papers and/or reports is part of job responsibilities
  - Competent with 1 or 2 higher level languages (e.g., C# and Python)
- Computer scientist
  - Degree(s) in computer science, with proficiency in math and physics
  - Knowledge of relevant naval architecture for writing software
  - Prefers to write software rather than papers or reports
  - Very competent with several computer languages
  - Skills in other areas, such as geometric modelling, visualization, graphical user interfaces, distributed simulation, and computer administration

# Matching of Skills To Tasks: Assignment of Work

- Numerical modelling of physical phenomena for hydrodynamics and structural mechanics
  - Domain expert uses higher level language (e.g., C#, MATLAB, Python)
- User interfaces and visualization
  - Computer scientist applies expertise to range of software applications
  - Domain expert can contribute if high-level framework is available
- Interoperability using distributed simulation
  - Computer scientist applies expertise in range of computer languages, including C++
- Code optimization

RDCIRDDC

 Computer scientist applies expertise in range of computer languages, including re-writing portions of code in faster language

# **Software Documentation**

- Types of documentation
  - Comments within source code
  - Theory reports describing what is being modelled by software
  - User manuals
- Provides many benefits:
  - Improved software maintainability
  - Confidence in software
  - Wider range of software users



# **Verification and Validation**

#### Verification:

- Testing to ensure that software correctly solves equations as intended
- Can include comparison of results with known solutions:
  - Analytical solutions
  - Other software that is known to be correct

#### Validation

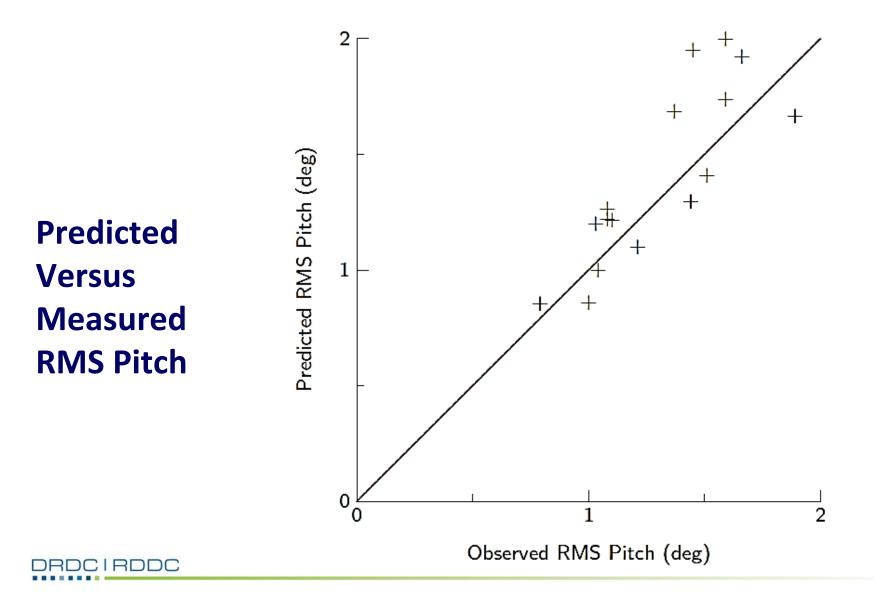
- Testing to ensure that software gives results that compare favourably with "real world"
- Can include comparison of results with:
  - Model experiments
  - Full-scale trials



#### Verification Example: Volume and Added Mass for a Hemisphere at Free Surface

| Number of panels | Volume V | Computed/Exact<br>Surge added mass A <sub>11</sub> | Sway added mass A <sub>22</sub> |
|------------------|----------|----------------------------------------------------|---------------------------------|
| 308              | 0.974    | 0.978                                              | 0.982                           |
| 704              | 0.988    | 0.990                                              | 0.990                           |
| 1972             | 0.996    | 0.996                                              | 0.996                           |

#### Agreement and convergence are required




#### Validation Example: Motions of a Naval Destroyer from Seakeeping Trials

- Full-scale sea trials are routinely conducted to obtain seakeeping validation data
- Accurate measurements of ship motions and directional wave spectra are essential







# Where Are We Going?

- Validation of complex simulations with model tests and full-scale trials
  - Replenishment at sea
  - Launch and recovery of small boats
- More timely and higher quality transfer of CAD data to analysis applications
  - Hydrodynamic models
  - Finite element models
- Routine application of computational fluid dynamics (CFD)
  - Prediction of hull maneuvering forces



# DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

